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Abstract. Analysts have considered the problem of infinite se-
ries rearrangement at least since Riemann gave the proof of his
series theorem in the 19th century. And in more modern times,
series rearrangements have been given a thorough algebraic treat-
ment. Levy established a duality between series (αn) ∈ CC and
rearrangements (σn) ∈ SN, involuted by the relation ”σ fixes α” iff
”α is fixed by σ” iff

∑∞
n=1 ασ(n) =

∑∞
n=1 αn. This has been called

Levi’s duality[2], and significant progress was made in the 1970s
to 1980s, especially in the study of fixors of the largest families of
series[1]. On the other hand, fixors of small families have not been
described with much detail. In this paper, it will be demonstrated
that real sequences can be modelled as paths through conservative
vector fields (Polya vector fields), and series as the corresponding
line (contour) integrals. In this view, series and rearrangements
arise from the same fundamental objects, vector fields and paths.
One layer deeper, this model is supersymmetric, as it sees a vector
field and a path as two manifestations of a single object: a grid-
path. A pragmatic approach to finding the fixors of a series will be
laid out. Multiple phase transitions in the geometry of this model
will be demonstrated, the most crucial being the transition from
harmonic fields to sub-harmonic fields.

1. Prologue: Rearranging Series

To illustrate the problem that arises from series rearrangement, con-
sider the token example of the effect of rearrangement on a series. Take

the alternating harmonic series ϱn = (−1)n−1

n
,

∞∑
k=1

ϱk = 1− 1

2
+

1

3
− 1

4
+ · · · = log(2)

Date: April 2024.
Thank you to Professor Jon McCammond for your time, for the initial idea of

grid representations, continued ideas and help. Thank you to my family for your
continued support. Thank you, Lesley.

1



2 MILES GOULD

and the rearrangement σ sums two negative terms after each positive,

n∑
k=1

ϱσk
= 1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+ · · ·

=

(
1− 1

2

)
− 1

4
+

(
1

3
− 1

6

)
− 1

8
+ · · ·

=
1

2
− 1

4
+

1

6
− 1

8
+ · · ·

=
1

2

(
1− 1

2
+

1

3
− 1

4
+ · · ·

)
=

1

2
log(2).

Tricks such as these, which involve some shuffle of a series into positive
and negative chunks, are often used to depict that commutativity may
fail when infinitely many terms are rearranged. In the context of shuf-
fles, these are actually quite extreme, as they deviate from the given
+,−,+,−, . . . shuffle linearly as n→ ∞.
Even so, what if a series which shrinks faster is rearranged in this

extreme way? Consider a subharmonic series,

n∑
k=1

αk =
n∑

k=1

(−1)k−1

kf(k)
,

where f(n) → ∞. In this case, as will be shown later, the previous
rearrangement will not be deviant enough to affect the series.

∞∑
k=1

(−1)k−1

kf(k)
=

∞∑
j=1

(−1)σk−1

σkf(σk)

=
1

f(1)
− 1

2f(2)
− 1

4f(4)
+

1

3f(3)
− · · · .

For example, let f(n) = log(n + 2), so that each side converges to
about 0.67539049, though the right hand side will converge incredibly
slowly, only at about 0.659 after 3 billion terms. We predict that
it will attain the third decimal after around 10500 terms, but it will
converge nonetheless. In general, there is a battle between the growth
of the absolute reciprocal sequence ( 1

|αn|) and the deviation of a shuffle.

Intuitively, these series are unaffected by linear shuffles because their
reciprocals are superlinear. In fact, many more asymptotic claims can
be made about all conditionally convergent series with the aid of the
geometric model laid out in the next section.
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2. Series and Rearrangements

Consider a conditionally convergent sequence α = (αn). For a given
n, one can partition {1, ..., n} into the positive and negative domains
M±

n ⊂ {1, ..., n} of α,

M±
n = {k ≤ n | ±αn > 0}.

n∑
j=1

αj =
∑
j∈M+

n

αj +
∑

k∈M−
n

αk

=

|M+
n |∑

j=1

αm+
j
−

|M−
n |∑

k=1

αm−
k
,

where m±
j is the unique increasing enumeration of M±

n , resp. To sim-
plify this correspondence, define

α±
n = αm±

n
and µ(n) = (µ1(n), µ2(n)) = (|M+

n |, |M−
n |),

yielding
n∑

j=1

αj =

µ1(n)∑
j=1

α+
j −

µ2(n)∑
k=1

α−
k .

Label these signed partial sums G1(n), G2(n), respectively and call the
resultant formula the standard form of α :

n∑
i=1

αi = G1(µ1(n))−G2(µ2(n))

= G1µ1(n)−G2µ2(n)

We will use the shorthand gf(n) = g(f(n)) for composition of these
N to N functions. If the need arises to multiply such functions, either
f · g(n) or f(n)g(n) will be used. Visually, one can interpret G1 and
G2 as axes, and µ as an increasing path along the vertices of the lattice
G1(N)×G2(N) embedded in [0,∞)2.

2.1. Rearrangements. Due to our subdivision of N into M± in our
treatment of series, it will be beneficial to decompose rearrangements
along that same partition.

Proposition 2.1. Let E,F be two infinite sets partitioning N. Every
rearrangement of N can be uniquely decomposed as a rearrangement of
E, a rearrangement of F, and a shuffle between E and F.
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Proof. Let σ ∈ SN. Consider the mapping σ 7→ (ψ1, ψ2, ζ), where ψ1 ∈
SE is its E−rearrangement, ψ2 ∈ SF its F -rearrangement, and ζ ∈
Shuf(E,F ) its shuffle. This is trivially surjective. For injectivity, let
σ, σ′ ∈ SN. Notice that any shuffle between E and F cannot affect
their respective orderings. (a stack of spades will not have its order
affected when shuffled once with a stack of hearts) Therefore, their E-
rearrangements and F -rearrangements must coincide. Of course, this
then determines their shuffles to coincide, as no two distinct shuffles of
identical stacks could possibly correspond. QED

3. Modeling Series as Contour Integrals

Let D be the non-negative ray, D = [0,∞) and A0 the set of home-
omorphisms from D to itself, A0 = Homeo(D). Take u ∈ A to be the
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identity under composition u(r) = r. Our goal is to develop the con-
tinuous analogy of a series expressed as an increasing path along the
vertices of a lattice in D2. One can extend G1, G2 from before to D
by interpolation, with a great degree of freedom. To demonstrate this
freedom, again consider a positive (or negative, resp.) partial sum α+

n .
Visualize this sequence as a step function, and our sum as the area be-
low it. Consider all the integrable functions g : D → D which always
satisfy ∫ n

n−1

g(t)dt = α+
n .

Every function satisfying this condition will represent α+ up to N. A
pair (g1, g2) will represent (α+, α−) up to N2. Their component-wise
integral, denoted (G1, G2), will represent (

∑
α+,

∑
α−) up to N2. This

motivates embeddingD2 into the first quadrant Q of C by (t, s) 7→ t+is
with the complex (Euclidean) topology.

Q = {z ∈ C | ℜ(z),ℑ(z) ≥ 0}

This induces the map (g1, g2) 7→ g where g : Q→ C by

g(z) = g1(ℜ(z)) + ig2(ℑ(z)).

Now interpolate the lattice path µ from before. Let µ : D → C by

µ(r) = µ1(r) + iµ2(r).

satisfying µ1, µ2 ∈ A0 (both of their respective components are contin-
uous and strictly increasing from 0 to ∞) and

n∑
i=1

αn =

∫ µ1(n)

0

g1(t)dt−
∫ µ2(n)

0

g2(t)dt

= G1µ1(n)−G2µ2(n)

again taking the shorthand Gjµj(r) = Gj(µj(r)). This defines the in-
terpolation W : D → R of the original series

W (r) = G1µ1(r)−G2µ2(r),

W ′(r) = g1µ1(r)µ
′
1(r)− g1µ2(r)µ

′
2(r).

Now consider the integrand of the contour integral of g over µ[0, r).

gµ · µ′ = (g1µ1 + ig2µ2) · (µ′
1 + iµ′

2)

= g1µ1 · µ′
1 − g2µ2 · µ′

2 + i [g1µ1 · µ′
2 + g2µ2 · µ′

1]
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Notice that the real part of this integrand is exactly W ′(r), so

W (r) =

∫ r

0

ℜ (gµ(t) · µ′(t)) dt

= ℜ
∫ r

0

gµ(t) · µ′(t)dt

= ℜ
∫
µ[0,r)

g(z)dz.

This yields the identity

n∑
k=1

αk = ℜ
∫
µ[0,n)

g(z)dz.

Example 3.1. Let αn = (−1)n−1

n
. Then, using the trigamma function

ψ1, one can extract the corresponding integrands

f1(r) =
1

2
ψ1

(
r +

1

2

)
, f2(r) = 2ψ1(2r + 1)− 1

2
ψ1

(
r +

1

2

)
The path will be close enough to µ(r) =

(
r
2
, r
2

)
, so use the latter.

If one is worried about this, the correspondence is exact on the even
naturals, so the error will be O

(
1
r

)
on D as r → ∞.

W = ℜ
∫ r

0

(
1

2
ψ1

(
t+ 1

2

)
+ 2iψ1(t+ 1)− i

2
ψ1

(
t+ 1

2

))(
1

2
+
i

2

)
dt

= ℜ
[(

1

2
+
i

2

)(∫ r+1
2

1
2

ψ1 (t) dt

+ 2i

∫ r+1

1

ψ1(t)dt− i

∫ r+1
2

1
2

ψ1 (t) dt

)]
=

1

2

∫ r+1
2

1
2

ψ1(t)dt−
∫ r+1

0

+
1

2

∫ r+1
2

1
2

ψ1(t)dt

=

∫ r+1
2

1
2

ψ1(t)dt−
∫ r+1

0

ψ1(t)dt

= ψ0

(
r + 1

2

)
− ψ0(r + 1) + 2 log(2)

= log(2) +O

(
1

r

)
→ log(2).
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Figure 2. Alternating Harmonic Grid-Path Colored by
Parameter Level Curves

Moreover, one obtains the following closed form for the total integral:∫
µ

g(z)dz = ψ0

(
r + 1

2

)
− ψ0(r + 1) + 2 log(2) + i(ψ0(r + 1) + γ)

=
n∑

j=1

αj + i
n∑

j=1

|αj|.

With this demonstration concluded, let us define the general case.

3.1. Axes and Pre-Axes. Let A be the set of homeomorphisms F ∈
A0 which correspond to one of the signed partial sums of some condi-
tionally convergent series. This occurs precisely when

∫ n

n−1
f(t)dt → 0

as n → ∞, but it will be convenient to take the stronger constraint
f(r) → 0 a.e. as r → ∞. Because F is increasing and continuous, F
will be differentiable (with unique derivative f) except on a set of iso-
lated points. To rid ourselves of this almost-everywhere caveat, define
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the a.e. representative of the derivative to be 0 whenever F is not dif-
ferentiable. This gives us a bijection between set A of asymptotically
dense axes,

A = {F ∈ A0 | f(r) → 0 as r → ∞}

and the set A of their derivatives (called pre-axes)

A = {f : D → D | f(r) → 0 as r → ∞}.

3.2. Fields and Grids. Given two axes, F1, F2 ∈ A, consider the
complex function F : Q → Q which corresponds to the grid generated
by the axes F1, F2.We accomplish this by demanding that F commutes
with ℜ and ℑ, which yields F (z) = F1ℜ+ iF2ℑ. As such, these F will
be called grids. The set R0 of grids and R of asymptotically dense
grids will be defined

R0 = {F : Q→ Q | F = F1ℜ+ iF2ℑ: F1, F2 ∈ A0}

R = {F ∈ R0 | F1, F2 ∈ A}

and the set R0 of fields and R of asymptotically dense fields

R0 = {f : Q→ Q | f = f1ℜ+ if2ℑ: f1, f2 ∈ A0}

R = {f ∈ R0 | F1, F2 ∈ A}.

As promised, these are analogous to signed sub-series. That said, a field
uniquely (up to a.e. equivalence) defines a grid because the constant
of integration is determined by F (0) = 0.

3.3. Paths. Finally, the set P0 of paths and P of normal paths by

P0 = {γ : D → Q | γ1, γ2 ∈ A0}.

P = {γ ∈ P0 | γ1 + γ2 = u}.

A normal path is the continuous analogy of a shuffle of a given pair of
series. This is why normal paths are parametrized along the taxicab
t + s = r instead of the Euclidean t2 + s2 = r2. However, a shuffle is
more naturally interpolated as a taxicab path along the grid N2. These
are nicely characterized as

P =
{
γ : D → Q | γ′(r) ∈ {1, i} constant for r ∈ [n− 1, n)

}
However, they are not pleasant to work with and we will justify using
a quotient of P to represent shuffles instead of P .



STABLE REARRANGEMENTS 9

4. Grid-Paths

Definition 4.1. A pre-field-path is a pair (f, γ) ∈ R×P0. The real part
of the contour integral

∫
γ
f(z)dz is usefully expressed as the work done

by the Polya vector field z 7→ f(z) over the path γ, and the imaginary
part is the flux of this field over γ.

Wγ

[
f
]
(r) = ℜ

∫
γ[0,r)

f(z)dz

Fγ

[
f
]
(r) = ℑ

∫
γ[0,r)

f(z)dz

Define the equivalence relation on (R× P0)
2 by reparametrization:

(f, γ) ≃ (g, µ) iff there exists some τ ∈ A0 s.t. γ(r) = µτ(r)

The corresponding classes gp(g, µ) ∈ (R × P0)/ ≃ will be called grid-
paths (or equivalently, field-paths) and the following shorthand will be
given

GP = (R× P0)/ ≃ .

This quotient takes on the form

GP ∼= R× P,

after choosing the representative gp(g, µ) ∈ P in every class gp(g, µ) ∈
GP.

The equivalence between grid-paths and field-paths is a crucial image
to keep in mind. A grid-path gp(g, µ) can primarily be visualized as
Gµ ∈ P0, the action on µ by G, where the levels curves are visualized
to show how distances are measured. If the grid lines are erased (the
parametrization is forgotten) then this looks like any other path in P.
On the other hand, it can also be visualized as the vector field

[
g
]

acting along µ ∈ P. These two perspectives will be deemed exterior
and interior, respectively, and visualized in figure 3.
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Figure 3. Dual Manifestations of Alternating Har-
monic Grid-Path

The following theorem justifies the claim that shuffles can be approx-
imated by normal paths.

Proposition 4.2. Let α ∈ CC. If ι(α) = gps(g, µ), then

lim
r→∞

Wµ

[
g
]
(r)−

⌈r⌉∑
k=1

αk

 = 0.

Proof. Consider the set X ⊂ D of extrema points of Wµ

[
g
]
,

X = {r ∈ D | Wµ

[
g
]′
(r) = 0} = {xj | j ∈ N},

the ordered indexing. Notice that the sequence

Wµ

[
g
]
(xj)−Wµ

[
g
]
(xj−1) → 0,

Suppose this is not the case, then there exists a sequence of positive
(or negative) chunks

nj∑
k=mj

α+ ≥ ϵ > 0,

where a chunk is a run of positive (or negative) terms being consecu-
tively added to a partial series. It is easy to see that if the sequence
of chunks of a series does not converge to 0, then the series diverges.
Thus the series

∑n
k=1 αk diverges, a contradiction.

Therefore,
Wµ

[
g
]
(xj)−Wµ

[
g
]
(xj−1) → 0,
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and it follows that the error∣∣∣∣Wµ

[
g
]
−

⌈r⌉∑
k=1

αk

∣∣∣∣ → 0,

as it is always bounded above by the prior quantity for some j where
j → ∞ as r → ∞. QED

Definition 4.3. Let (f, γ) ∈ GP. The optimal shuffle γ̌f of γ with
respect to f is the unique shuffle which minimizes

|γ̂f − γ| and |F γ̂f − Fγ|,
with priority given to the latter. The lattice representative of f is
f̌(n) =

∫ n

n−1
f(t)dt and the set of such lattices

Ř = {f : D → Q | f(r) constant for r ∈ [n− 1, n)}.

Definition 4.4. Furthering the model, grid-paths are analogous to
series. To obtain series exactly, consider the relation □ on GP2 which
equates paths up to their optimal shuffle and lattice integrals

gp(f, γ) □ gp(g, µ) iff f̌ = ǧ and γ̌ = µ̌

The corresponding classes gps(g, µ) will be called grid-path series

GPS = GP/□

and the representative gps(g, µ) = (ǧ, µ̌).

Because series can be rearranged to be divergent, a larger set must
be defined to contain all these divergent rearrangements in addition to
CC.

Definition 4.5. Let CV denote the set of sequences which tend to 0
and whose absolute series tend to ∞.

CV =

{
α : N → R

∣∣∣∣αn → 0,
∞∑
k=1

|αn| = ∞
}

Lemma 4.6.

CV = CCSN = {ασ | α ∈ CC, σ ∈ SN}

Proof. For the forward direction, a series α ∈ CC has signed sub-series
tending to ∞ and summands tending to 0. Therefore, any rearrange-
ment of α must also have these properties. For the backward direction,
let α ∈ CV. Construct σ iteratively to minimize∣∣∣∣ n∑

k=1

ασk

∣∣∣∣
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for each n. By construction, this quantity can only be as big as the
largest summand not yet achieved, so converges (to 0). For a more
rigorous treatment of this idea, see the proof of lemma 5.12. QED

Proposition 4.7. CV ∼= GPS under the bijection ι.

Proof. As demonstrated in the prologue, a series α ∈ CC can be
uniquely decomposed into a pair of signed subsequences and a shuf-
fle between them, and this shuffle is uniquely represented by its lin-
ear representative. The same is true of α ∈ CV, as the assumption
of convergence was never used in the construction of the representa-
tive. QED

This decomposition naturally embeds CC into GPS by the demon-
stration in the prologue.

Definition 4.8. Define the canonical mapping ι : CV → GPS by

ι(α) = gps(g, µ),

where g1(r) = α+
⌈r⌉, g2(r) = α−

⌈r⌉, µ(r) the linear representative of the

shuffle µ̌g.

Definition 4.9. Let α ∈ CV. Define its signed multisets by the mul-
tiplicity functions m± : D → N by

m±(r) =
∣∣{n ∈ N | α±

n = r}
∣∣.

In our view of rearrangements, a series α is a rearrangement of another
β if and only if the underlying multisets of the sequences (α±

n ), (β
±
n ) are

identical (where the signs match accordingly). Notice that multisets
are required, as two sequences could have identical underlying sets, but
also differing rearrangement orbits due to differing multiplicities.

Let g ∈ R. Define its maximal representative ĝ : N → (0,∞) by

Ĝj(n) = max

{∑
k∈E

∫ k

k−1

gj(t)dt

∣∣∣∣E ⊂ N, |E| = n

}
,

which will always be the sum of the n largest elements of the underly-
ing multiset, and thus will be the unique (up to multiset degeneracy)
monotone rearrangement of the discrete field ǧ. Consider the relation
# on GPS2 by

gps(f, γ) # gps(g, µ) iff f̂ = ĝ.
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Proposition 4.10. A series α = gps(g, µ) can be rearranged into a
series β = gps(f, γ) if and only if their maximal (monotone) grids
coincide,

mg(g, µ) = mg(f, γ).

As a consequence, mg : GPS → MG maps each series to the set of
its rearrangements,

GPS ∼= MG× SN.

Proof. QED

From this construction, to find the fixors of a given α ∈ CC, one
may restrict their view to grid-paths which share a maximal grid with
α. This also motivates a permutation retrieval strategy, where first
each gps(f, γ) ∈ GPS is given its canonical signed rearrangement

and shuffle with respect to (f̂ , ζ f̂ ), where ζf ∈ P is the shuffle which

minimizes |F1ζ
f
1 (r) − F2ζ

f
2 (r)| and |ζf1 (r) − ζf2 (r)| with priority given

to the former. Then each of these permutations composed to the left
of σ−1, where σ ∈ SN is the representative permutation of α in its
maximal grid class. Therefore, any given series α ∈ C assigns a unique
permutation (up to multiset degeneracy) to every series in CV and
any permutation σ ∈ SN uniquely defines a set of representatives of
elements of MG. (each being the σ rearrangement of their mg-rep.)
In other words, permutations are a special type of class formed by a
choice function over MG which preserve proximity to the maximal
representative.

5. Fixors

Definition 5.1. Let α ∈ CC. The set α× of fixors of α are traditionally
given by

α× =

{
σ ∈ SN

∣∣∣∣ ∞∑
n=1

ασn =
∞∑
n=1

αn

}
.

In our view, if ι(α) = gps(g, µ) ∈ GPS, the fixors will be given by the
set of gps which share a maximal grid and total work with (g, µ).

(g, µ)× =
{
gps(f, γ) ∈ mg(g, µ) | Wγ

[
f
]
= Wµ

[
g
]}
.

This is useful, as Wγ[·] a well defined linear functional the the set of
fields f such that gps(f, γ) ∈ ι(CC).

Proposition 5.2. Let α ∈ CC, gps(g, µ) = ι(α).

(g, µ)× =
⊔
f̂=ĝ

{
gps(f, γ) | γ ∈ P : Wγ

[
f
]
= Wµ

[
g
]}
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though the more concise expression is given by absorbing the grid com-
ponent into the index:

(g, µ)× ∼=
∐
f̂=ĝ

{
γ ∈ P | Wγ

[
f
]
= Wµ

[
g
]}
.

Proof. This result is just a quick corollary of prop. 4.10. By this propo-
sition, the fixors (all permutations in general) of (g, µ) can be decom-
posed over its monotone grid class, so

(g, µ)× =
⊔
f̂=ĝ

{
(f, γ) ∈ gps(g, µ) | Wγ

[
{
]
= Wµ

[
g
]}
,

∼=
∐
f̂=ĝ

{
γ ∈ P | Wγ

[
f
]
= Wµ

[
g
]}

QED

Definition 5.3. Let gps(g, µ) ∈ GPS, f ∈ R. Define the fixing shuffle
class (g, µ)×f =

{
γ ∈ P | Wγ

[
f
]
= Wµ

[
g
]}
, so that the fixors take on

the form

(g, µ)× =
∐
f̂=ĝ

(g, µ)×f .

The following theorem is the most crucial for discerning the general
geometry of grid-paths.

Theorem 5.4 (Local Work Principle). Let (h, γ), (g, µ) ∈ GP. If there
exist δj : D → R for j = 1, 2, 3 such that

(i) Hj(r) = Gj(r + δj(r)) for j = 1, 2,

(ii) γj(r) = µj(r) + (−1)jδ3(r),

(iii) lim sup
r→∞

|δj(r)| <∞ for j = 1, 2, 3,

then Hγ(r)−Gµ(r) → 0.

Proof. If Hj(r) = Gj(r + δj(r)), where lim supr→∞ δj(r) <∞, then for
any γ ∈ P,

Hjγj(r) = Gj(γj(r) + δjγj(r)),

Let us quickly show that Gj(γj(r) + δjγj(r)) − Gjγj(r) → 0. Clearly
δjγj is still bounded, and gj → 0, so

Gj(γj(r) + δjγj(r))−Gjγj(r) =

∫ γj(r)+δjγj(r)

γj(r)

gj(t)dt

= O(gj(t)) → 0.
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Thus from here, it suffices to show that for general γj, δj from before,
Gjγj(r)−Gj(γj(r)+ δj(r)) → 0, but this is exactly the same condition
as before, because evaluating the grid along an outer-deviated path
is equivalent to evaluating some inner-deviated grid along the path.

QED

Definition 5.5. Let g ∈ R. Let δ : D → Q. g is said to be δ−tame iff

lim
r→∞

inf
δ∈[0,δ(r)]

f(r + δ)

f(r)
= lim

r→∞
sup

δ∈[0,δ(r)]

f(r + δ)

f(r)
= 1,

where the convention [a, b] 7→ [b, a] whenever a > b, so [0, δ(r)] 7→
[δ(r), 0] when δ(r) < 0. If ∆ ⊆ QD, then f is ∆−tame iff f is δ-tame
for some δ ∈ ∆.

Corollary 5.6 (Strong Substitution Principle). Let h, g ∈ R such that
H(z)−G(z) = O(g(z)). If g is O(1)−tame, then for all µ ∈ P, Hµ(r)−
Gµ(r) → 0. Thus, for all µ ∈ P, f̂ = ĝ,

(g, µ)×f = (h, µ)×f .

Proof. The substitution principle is really a special case of the invariant
property. Notice that, for tame g,∫ r+O(1)

r

gj(t)dt = O(gj(r)),

so for any µ ∈ P,

Hµ(r) = Hµ(r) +

∫
µ[r,r+O(1))

g(z)dz.

We can then see that Hµ(r) = G(µ(r) + O(1)), so by the invariant
property, Hµ(r)−Gµ(r) → 0. QED

The prior theorem states that a field h can be substituted in for
g whenever finding the work-equivalent grid-paths of (g, µ). (though
this does not mean their underlying fixors will be the same) It will be
helpful to make such substitution claims about individually specified
paths. The following proposition does so.

Proposition 5.7 (Weak Substitution Principle). Let h, g ∈ R such

that H(z)−G(z) = O(g(z)). For all µ ∈ P such that gµ is o
(

1
gµ

)
−tame,

Hµ(r)−Gµ(r) → 0.

Proof. As before, express the difference integral

Hjµj(r)−Gjµj(r) =

∫ µj(r)+o

(
1

gjµj(r)

)
µj

gj(t)dt,
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so that tameness immediately yields∫ µj(r)+o

(
1

gjµj(r)

)
µj(r)

gj(t)dt = o

(
gjµj(r)

gjµj(r)

)
→ 0.

QED

Now, returning to the fixing shuffle classes (g, µ)×f , reparametriza-
tion causes a bit of trouble. As such, finding fixors is two-fold. One
first must find the pre-grid paths (f, F−1(Gµ + o(1))) ∈ R × P0, and
reparametrize them individually so that their paths are all in P.

Proposition 5.8. Let (g, µ) ∈ GP, f ∈ R. The fixing shuffle class
(g, µ)×f is a path-equivalent to the family of paths F−1(Gµ+ o(1)),

(g, µ)×f = F−1(Gµ+ o(1))/ ≃,
where the quotient is the set of ≃ −class representatives.

Proof. By the relation ≃, QED

These results enable one to start finding fixors. From this point on,
the alternating harmonic series will be used as the main example, as it
lies just above the main phase transition threshold.

Example 5.9. As before, ι(ϱ) = gps(g, µ), where

g1(r) =
1

2
ψ1

(
r +

1

2

)
+
γ

2
+ log(2),

g2(r) = ψ1(2r + 1)− 1

2
ψ1

(
r +

1

2

)
+
γ

2
− log(2),

µ = e.

Notice that log(r) = ψ0(r) + O(r−1). By the strong substitution prin-
ciple, one exchange G with H ∈ R by

H1(r) =
1

2
log(r + 1) +

γ

2
+ log(2), H2(r) =

1

2
log(r + 1) +

γ

2
e.a.

so h1(r) = h2(r) eventually always.
To demonstrate the utility of prop. 5.8, let us find all the fixors of ϱ

corresponding to the grids

F1(r) = a log(r + 1), F2(r) = b log(r + 1),

where 0 < a, b ≤ 1/2.

a log(γ1(r) + 1) =
1

2
log(r + 1) +

γ

2
+ log(2) + o(1),

b log(γ2(r) + 1) =
1

2
log(r + 1) +

γ

2
+ o(1),
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and by 5.8, we may allow γ ∈ P0, so that

γ1(r) = 2
1
a e

γ
2a r

1
2a + o

(
r

1
2a

)
, γ2(r) = e

γ
2b r

1
2b + o

(
r

1
2b

)
.

Now simply solve for the one which will be smaller. In general, γ1 < γ2
iff a > b. If a > b, then

(g, µ)×f =

{
γ ∈ P

∣∣∣∣γ1(r) = 2r
b
a + o

(
r

b
a

)}
;

otherwise

(g, µ)×f =

{
γ ∈ P

∣∣∣∣γ2(r) = r
a
b

2
+ o

(
r

a
b

)}
.

Notice that every such path looks like
(
2r

b
a , r − 2r

b
a

)
at ∞, as the

variance between any two paths is asymptotically smaller than their

growth. This ceases to be the case for any f(z) = o
(

1
|z|

)
, which is

essentially the phase transition from the abstract.

Definition 5.10. Let γ ∈ P0. Define θ(γ), the asymptotic class of γ
and Θ(γ), the asymptotic order of γ, by

θ(γ) =
{
λ ∈ P | λj = γj + o(γj)

}
,

Θ(γ) =
{
λ ∈ P | λj = O(γj), γj = O(λj)

}
.

Notice that θ,Θ extend to any space constructed out of real-valued
functions on D.
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Proposition 5.11 (Harmonic Phase Transition). Let (g, µ) ∈ GP.
If 1

|z| = O(ĝ(z)), then for every grid f ∈ R on the same asymptotic

order as ĝ, (f ∈ Θ(ĝ)) the fixing shuffle class is contained in its own
asymptotic class,

(g, µ)×f ⊆ θ(g, µ)×f .

If the opposite is true, ĝ(z) = o
(

1
|z|

)
, then for every f ∈ R on the

same asymptotic order as ĝ, the fixing shuffle class contains its own
asymptotic order,

Θ(g, µ)×f ⊆ (g, µ)×f .

Proof. In the first case, Let λ, γ ∈ (g, µ)×f . Then∫ λj(r)

γj(r)

f(t)dt→ 0,

so by the assumption 1
|z| = O(ĝ(z)) = O(f(z)),∫ λj(r)

γj(r)

1

t
dt→ 0,

i.e.
λj(r)

γj(r)
→ 1.

Finally λj(r) = θ(γj(r)) for any pair, so

(g, µ)×f ⊆ θ(g, µ)×f .

For the second case, let γ ∈ (g, µ)×f and λ ∈ Θ(γ).∫ λj(r)

γj(r)

f(t)dt = o

(
λj(r)

γj(r)

)
= o(Θ(1)) → 0.

Therefore, Θ(g, µ)×f ⊆ (g, µ)×f . QED
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As figure 4 is beginning to show, subharmonic fields collapse the
entire linear quadrant into a single shuffle class, regardless of mono-
tonicity, so long as the monotone grid is subharmonic. The problem
of finding fixors becomes quite different for subharmonic fields F , pre-
cisely because they fail the property 1

g
= o(G) from the proofs of the

substitutions principles. In this range of fields, shuffles become far less
effective at affecting series. If a path γ is bounded between any two
lines of positive slope, then on any subharmonic grid f,

Wγ

[
f
]
= We

[
f
]
.
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Figure 4. Linear Paths Through Harmonic vs Subhar-
monic Fields
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The keen reader may say something like this happens for every bound-
ary f = o(g) and g = O(f). While this is true, none are so visually
apparent, which has to do with the choice of taxicab parametriza-
tion when taking a path quotient. Because a harmonic field f has

r = θ
(

1
fj(r)

)
, it is the boundary at which the ”radius” of the central

fixing class surpasses to the ”radius” r of the shuffle space up to r.

Lemma 5.12. [Maximal Grid Density Lemma] Let g, g̃ ∈ R such that

g̃ ≤ ĝ. There exists some f ∈ R such that f̂ = ĝ and F (r)− G̃(r) → 0.

Proof. For ϵ > 0, define

E(ϵ) = {j ∈ N | g̃(k) ≤ ϵ}
and the mapping σ : N → N by

σ(n) =

{
minE

(
g̃(n)
2

)
\ σ[1, n), ǧ(n− 1) ≤

∑n−1
j=1 g̃(σj);

minN \ σ[1, n), g̃(n− 1) >
∑n−1

j=1 ǧ(σj).

We will demonstrate that this is a bijection by demonstrating that the
recursion mapping satisfies the condition of each of its pieces infinitely
often. By definition, f̌(0) = g̃(0), so n = 0 will always satisfy the first
condition. Because f̌(σn) ≤ g̃

2
,

g̃(n− 1)−
n−1∑
j=1

f̌(σj) ≥
1

2

n−1∑
j=1

f̌(j) =
g̃(n− 1)

2
,

but the right hand side would diverge if the first recursion iterated
arbitrarily, i.e. the second condition will be satisfied after a finite run.

And since F̌ − G̃
2
→ ∞, there will be a wealth of early terms to pluck

from which will eventually force the rearranged sequence to satisfy
the first condition once again. Thus, by induction, each condition is
satisfied infinitely often. The mapping is clearly injective, as each σ(n)
is defined not to be in σ[1, n). Furthermore, the second recursion forces
surjectivity, as its condition is satisfied infinitely often and it achieves
precisely the smallest natural not yet achieved each time. Thus σ ∈ SN,
so we need only to prove F−G̃→ 0.We can see that runs satisfying the
first condition will yield sums getting monotonically closer to the target
G̃, as the summands are defined to be smaller than those of G̃. Runs
satisfying the second condition with either monotonically decrease the
target gap until it overshoots by less than the largest term not yet
summed. Therefore, F − G̃→ 0. QED

Proposition 5.13 (Riemann GPS Theorem). Let α ∈ CC, gps(g, µ) =
ι(α). Let w : D → R be integrable such that w(r) → 0 and W (r) =
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0
w(t)dt satisfies

−Ĝ2µ2(r) ≤ W (r) ≤ Ĝ1µ1(r).

For every f ∈ R such that f̂ = ĝ, there exists some ϵ ∈ A and an
uncountable family of rearrangements σ ∈ SN corresponding to (f, γ) ∈
mg(g, µ) which satisfy

n∑
k=1

ασk
−W (n) = O(ϵ(n)).

This is to say that every limit of vanishing change is obtained by un-
countably many rearrangements in every shuffle class of α with non-
trivial rate of convergence.

Proof. Let f̂ = ĝ. Let r ∈ D. By the intermediate value theorem,
there exists a complex number t + is such that t + s = r and W (r) =
F1(t) − F2(s). Furthermore, because W and F are continuous, some
path γ(r) = s(r) + it(r) is as well. Furthermore, let λ ∈ P such that

λj(r)− γj(r) = o

(
max

t∈[γj(r),λj(r)]

1

fj(t)

)
.

Then

Fjλj(r)− Fjγj(r) =

∫ λj(r)

γj(r)

fj(t)dt

= o(1) → 0

Thus, the shuffle class around µ has a ”radius” o
(
mint∈[γj(r),λj(r)]

1
fj(t)

)
,

and since fj(r) → 0, this radius goes to ∞. Therefore, the construction
of an arbitrary permutation in this family requires countable binary
choices. (every time this radius increases sufficiently) QED

Theorem 5.14 (Superharmonic Fixing Condition). Let f ∈ R γ, λ ∈
P. If γ, λ satisfy the condition

λj(r)− γj(r) = o

(
min

t∈[γj(r),λj(r)]

1

fj(t)

)
,

then Fλ(r) − Fγ(r) → 0. Moreover, if ever gps(f, γ) ∈ (g, µ)×f or

gps(f, γ) ∈ (g, µ)×f , then both inclusions hold.
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Proof. As in the prior proof,

|Fjλj(r)− Fjγj(r)| =
∣∣∣∣ ∫ λj(r)

γj(r)

fj(t)dt

∣∣∣∣
= o

(
maxs∈[γj(r),λj(r)] fj(s)

maxt∈[γj(r),λj(r)] fj(t)

)
= o(1) → 0.

QED

Unfortunately, finding such a condition for subharmonic series is
quite challenging beyond Θ(g, µ)×f ⊆ (g, µ)×f . Let us demonstrate some
useful formulas for the contour integrals corresponding to grid-paths.

6. Contour Integrals

Proposition 6.1. Let (f, γ) ∈ GP. Then its contour integral is∫
γ[0,r)

f(z)dz = F1γ1(r)− F2γ2(r) + i
(
F1γ1(r) + F2γ2(r) + Eγ

[
f
]
(r)

)
,

where

Eγ

[
f
]
(r) =

∫ r

0

(f1γ1(t)− f2γ2(t))(γ
′
2(t)− γ′1(t))dt.

Proof.∫
γ[0,r)

f(z)dz =

∫ r

0

(f1γ1(t) + if2γ2(t))(γ
′
1(t) + iγ′2(t))dt

=

∫ r

0

(f1γ1(t)γ
′
1(t)− f2γ2(t)γ

′
2(t))dt

+ i

∫ r

0

(f1γ1(t)γ
′
2(t) + f2γ2(t)γ

′
1(t))dt

= F1γ1(r)− F2γ2(r) + i(F1γ1(r) + F2γ2(r))

+ i

∫ r

0

(f1γ1(t)− f2γ2(t))(γ
′
2(t)− γ′1(t))dt

= F1γ1(r)− F2γ2(r) + i
(
F1γ1(r) + F2γ2(r) + iEγ

[
f
]
(r)

)
QED

This term Eµ

[
g
]
(r) is called the error flux of f over γ. In many cases,

it turns out, error flux converges to Eµ
[
g
]
. The following proposition

provides one sufficient condition for this convergence.
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Proposition 6.2. Let (g, µ) ∈ GP. If

g1µ1 − g2µ2 ∈ Lp(D) and µ′
1 − µ′

2 ∈ Lq(D)

for Hölder conjugates p, q ∈ (1,∞), then Eµ
[
g
]
converges.

If α ∈ CC such that ι(α) = gps(g, µ), then there exists a unique
convergent complex series

∑∞
k=1 βk such that∫

µ[0,n)

g(z)dz =
n∑

j=1

αj + i

n∑
k=1

|αk|+
n∑

l=1

βl and
∞∑
l=1

βl = iEµ
[
g
]
.

Proof. By Hölder’s inequality, (g1µ1 − g2µ2)(µ
′
2 − µ′

1) ∈ L1(D), so we
can immediately see that

Eµ
[
g
]
=

∫ ∞

0

(g1µ1(t)− g2µ2(t))(µ
′
2(t)− µ′

1(t))dt converges.

Let ι(α) = gps(g, µ). By prop. 6.1,

ℑ
∫
µ[0,r)

g(z)dz −G1µ1(r)−G2µ2(r) → Eµ
[
g
]
,

and by prop. 4.2,

G1µ1(n) +G2µ2(n)−
n∑

k=1

|αk| → 0

Now define

βn =

∫
µ[n−1,n)

g(z)dz − αn − i|αn|

and notice that the prior work shows that

∞∑
k=1

βk = iEµ
[
g
]
,

so β is exactly the series we were looking for. QED

This series β is of much interest to grid-paths, as it measures the
error between a grid-path and an ideal series

n∑
k=1

βk =

∫
µ[0,n)

g(z)dz −
n∑

j=1

αj − i

n∑
k=1

|αk|

=

∫
µ[0,n)

g(z)dz −

(1 + i)

µ̌1(n)∑
j=1

α+
j + (−1 + i)

µ̌2(n)∑
k=1

α−
k

 .
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The crux of this model is exploitation of the fact

ℜ
∞∑
k=1

βk = 0,

so neglect ℜβn and define its real part, α(g,µ) ∈ CC, by

α(g,µ)
n = ℑ

∫
µ[n−1,n)

g(z)dz − i|αn|.

α(g,µ) will be called the inversion of the α about (g, µ).

Proposition 6.3. Let g ∈ R. There exists a continuous path ζ : D →
Q such that |ζ(r)| ↗ ∞ and for every r ∈ D, G is analytic at ζ(r).
Call the path ζ = ζg the analytic path of G. If g ↘ 0, then ζg is unique
and is in P.

Proof. Consider the Cauchy-Riemann Equations on G. Let a general
complex variable z = t+ is.

∂G1

∂t
= g1(t),

∂G1

∂s
= 0,

∂G2

∂s
= g2(s),

∂G2

∂t
= 0,

so G is analytic at z if and only if (thanks to the assumption of conti-
nuity)

g1(t) = g2(s).

By the intermediate value theorem, there must exist such a solution
t + s = r for every r ∈ D, so the analytic path exists. To prove
uniqueness in the monotone case, fix r ∈ D and let t + s = t′ + s′ =
r. Suppose g1(t) = g2(s) and g1(t

′) = g2(s
′). Then g1(t) − g1(t

′) =
g2(s) − g2(s

′). These must have opposite signs, so g1(t) = g1(t
′) and

g2(s) = g2(s
′), so t = t′ and s = s′. Now label this unique map r 7→ t+is

by ζ : D → Q. Since g1(ζ1(r)) = g2(r − ζ1(r)) for all r, we can simply
express r− ζ1(r) = g−1

2 g1ζ1(r), so either both sides must be decreasing
or both increasing. If the former, then ζ1(r) + ζ2(r) ̸= r as the LHS is
decreasing, a contradiction. Therefore, both sides are increasing for all
r, so ζj ∈ A0, i.e. ζ ∈ P. QED

Definition 6.4. The path e ∈ P by e1(r) = e2(r) =
r
2
will be called

the symmetric path. Correspondingly, every reparametrization of e will
be called symmetric.

Proposition 6.5. Let (g, µ) ∈ GP. Then

Eµ
[
g
]
= 0
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if and only if µ is an analytic path of G almost whenever µ is not
parallel to the symmetric path. If ζg eventually never intersects with e,
then µ = ζg eventually always or µ = e eventually always.

Proof. Remember that

Eµ
[
g
]
=

∫ r

0

(g1µ1(t)− g2µ2(t))(µ
′
2(t)− µ′

1(t))dt.

The target formula holds iff this error integral is 0 a.e., equivalent to
g1µ1(r) = g2µ2(r) or µ′

1(r) = µ′
2(r) a.e. Thus there could be two

distinct paths generated by every intersection of the analytic and sym-
metric paths. If there are no intersections, then µ must be analytic
always or symmetric always. QED

The formula described in prop. 6.5 grants many arithmetical advan-
tages. For example, canonical inversion by the symmetric reflection

gT (z) = ig(iz) = g2ℜ+ ig1ℑ
yields the formula

Wµ

[
gT

]
= −Wµ

[
g
]
and Fµ

[
gT

]
= Fµ

[
g
]

when Eµ
[
g
]
= 0. There seems to be a powerful linear structure on fields

which emerges when the space is centered on the symmetric path.

7. The Hilbert Space of Fields

Let us extend R to also include homeomorphisms from D to finite
increasing graphs in Q.

V =
{
f : D → Q | ∃rj ∈ [0,∞] s.t. fj ∈ Homeo(D, [0, rj))

}
Equip V with pointwise addition

(f + g)(z) = f(z) + g(z)

and pointwise scalar multiplication by

aeiθf = (1 + i)a
f1 + f2

2
+ (1− i)a cos(θ)

f1 − f2
2

.

Before defining an inner product, consider the functional ϕ : GP → C
ϕγ(f) = Wγ

[
f
]
+ iEγ

[
f
]
.

This will be the foundation of the inner product, as it not only measures
the deviation of its underlying series, but also the deviation of its path
from the symmetric and analytic paths. The inner product will be
defined

⟨f, g⟩γ = ϕγ(f)ϕγ(g).
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It is our hope to develop functional analysis on this space where grids
and paths are dual to each other, though this goal is beyond the scope
of this paper, so the discussion of Hilbert Spaces will halt here.

8. Conclusion

Originally, this paper was born in service the simple logistical goal:
Given a series α ∈ CC, describe its fixors. Grid-paths grant structure
to these fixors, by allowing the decomposition of series/rearrangements
into fields/grids and paths. While earlier renditions of this paper saw
this geometric model rise from scratch as a model in D2, the complex
geometry adds effortless formality to the correspondence between fields
and grids. This correspondence bridges the gap between grid-paths,
which document the lengths of absolute series/the differences between
partial series, and field-paths, which document the differences between
signed partial series/the differences between shuffles. The local work
principle grants us two main tools for finding fixors, the substitution
princples and the invariant fixing condition. The maximal grid density
lemma and Riemann GPS Theorem justify the intuition that series
rearrangements are just as dense as grid-paths. (up to the lattice)

The most interesting result is the harmonic phase transition, which
grants that every linear shuffle is a fixor of every convergent subhar-
monic series. In some sense, the problem of finding fixors of subhar-
monic series becomes solid, whereas the problem is liquid for superhar-
monic series. The former is far more concerned with the rigid structure
of signed rearrangements than the fluid structure of shuffles. We antic-
ipate more progress in the study of signed rearrangements of subhar-
monic series, which are likely to show that even signed rearrangements
are fairly ineffectual in altering series. It is my personal hope to develop
a theory of quasi-commutativity of conditionally convergent series, in
which addition is defined on grid-paths, instead of grid-path series and
rearrangements are defined as the formal classes of grid-paths which
they represent.
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